Untitled
engadget:

Oculus Rift helps terminally ill woman take one last stroll in the sun

8bitatoms:

phoenixfire-thewizardgoddess:

sevvey6:

morbidamusement:

captain-snark:

bananamerlin:

maderadearquitecto:

Thermochromic table by Jay Watson

imagine banging someone on that table

imagine being home alone and seeing imprints on that table

noooooo stop

Imagine having a friend sit at that table for a long while, but when they get up there’s no imprints at all.

What if you got up after trying to console a crying friend, and found that you had no imprints… and they were crying because they missed you?

aaaah it was a cool table now it’s a horror/drama story

engadget:

NASA catches a glimpse of Saturn birthing a new moon
discoverynews:

Touch, Tilt 3-D Images Like You’re Tony Stark
The time is coming when we can bat around holographic images like Tony Stark did in Ironman 2. Only instead of holograms, they’re images generated with help from a fog machine. Read more

discoverynews:

Touch, Tilt 3-D Images Like You’re Tony Stark

The time is coming when we can bat around holographic images like Tony Stark did in Ironman 2. Only instead of holograms, they’re images generated with help from a fog machine. Read more

neurosciencestuff:

Amputee Feels in Real-Time with Bionic Hand

Nine years after an accident caused the loss of his left hand, Dennis Aabo Sørensen from Denmark became the first amputee in the world to feel – in real-time – with a sensory-enhanced prosthetic hand that was surgically wired to nerves in his upper arm. Silvestro Micera and his team at EPFL Center for Neuroprosthetics and SSSA (Italy) developed the revolutionary sensory feedback that allowed Sørensen to feel again while handling objects. A prototype of this bionic technology was tested in February 2013 during a clinical trial in Rome under the supervision of Paolo Maria Rossini at Gemelli Hospital (Italy). The study is published in the February 5, 2014 edition of Science Translational Medicine, and represents a collaboration called Lifehand 2 between several European universities and hospitals.

“The sensory feedback was incredible,” reports the 36 year-old amputee from Denmark. “I could feel things that I hadn’t been able to feel in over nine years.” In a laboratory setting wearing a blindfold and earplugs, Sørensen was able to detect how strongly he was grasping, as well as the shape and consistency of different objects he picked up with his prosthetic. “When I held an object, I could feel if it was soft or hard, round or square.”

From Electrical Signal to Nerve Impulse
Micera and his team enhanced the artificial hand with sensors that detect information about touch. This was done by measuring the tension in artificial tendons that control finger movement and turning this measurement into an electrical current. But this electrical signal is too coarse to be understood by the nervous system. Using computer algorithms, the scientists transformed the electrical signal into an impulse that sensory nerves can interpret. The sense of touch was achieved by sending the digitally refined signal through wires into four electrodes that were surgically implanted into what remains of Sørensen’s upper arm nerves.

“This is the first time in neuroprosthetics that sensory feedback has been restored and used by an amputee in real-time to control an artificial limb,” says Micera.

“We were worried about reduced sensitivity in Dennis’ nerves since they hadn’t been used in over nine years,” says Stanisa Raspopovic, first author and scientist at EPFL and SSSA. These concerns faded away as the scientists successfully reactivated Sørensen’s sense of touch.

Connecting Electrodes to Nerves

On January 26, 2013, Sørensen underwent surgery in Rome at Gemelli Hospital. A specialized group of surgeons and neurologists, led by Paolo Maria Rossini, implanted so-called transneural electrodes into the ulnar and median nerves of Sørensen’s left arm. After 19 days of preliminary tests, Micera and his team connected their prosthetic to the electrodes – and to Sørensen – every day for an entire week.

The ultra-thin, ultra-precise electrodes, developed by Thomas Stieglitz’s research group at Freiburg University (Germany), made it possible to relay extremely weak electrical signals directly into the nervous system. A tremendous amount of preliminary research was done to ensure that the electrodes would continue to work even after the formation of post-surgery scar tissue. It is also the first time that such electrodes have been transversally implanted into the peripheral nervous system of an amputee.

The First Sensory-Enhanced Artificial Limb
The clinical study provides the first step towards a bionic hand, although a sensory-enhanced prosthetic is years away from being commercially available and the bionic hand of science fiction movies is even further away.

The next step involves miniaturizing the sensory feedback electronics for a portable prosthetic. In addition, the scientists will fine-tune the sensory technology for better touch resolution and increased awareness about the angular movement of fingers.

The electrodes were removed from Sørensen’s arm after one month due to safety restrictions imposed on clinical trials, although the scientists are optimistic that they could remain implanted and functional without damage to the nervous system for many years.

Psychological Strength an Asset
Sørensen’s psychological strength was an asset for the clinical study. He says, “I was more than happy to volunteer for the clinical trial, not only for myself, but to help other amputees as well.” Now he faces the challenge of having experienced touch again for only a short period of time. 

Sørensen lost his left hand while handling fireworks during a family holiday. He was rushed to the hospital where his hand was immediately amputated. Since then, he has been wearing a commercial prosthetic that detects muscle movement in his stump, allowing him to open and close his hand, and hold onto objects.

“It works like a brake on a motorbike,” explains Sørensen about the conventional prosthetic he usually wears. “When you squeeze the brake, the hand closes. When you relax, the hand opens.” Without sensory information being fed back into the nervous system, though, Sørensen cannot feel what he’s trying to grasp and must constantly watch his prosthetic to avoid crushing the object.

Just after the amputation, Sørensen recounts what the doctor told him. “There are two ways you can view this. You can sit in the corner and feel sorry for yourself. Or, you can get up and feel grateful for what you have. I believe you’ll adopt the second view.”

“He was right,” says Sørensen.

Urgent security update

support:

Bad news: A major vulnerability has been disclosed for the technology that powers encryption across the majority of the internet. That includes Tumblr. Our team took immediate action to fix the issue, but you should still take some time to change your password, not only here but on any other sites you visit. 

You should also strongly consider enabling two-factor authentication. It’ll go a long way to ensure that no one besides you can access your account. Thanks, and take care.

jtotheizzoe:

asapscience:

Yes! For example: It’s Okay To Be Smart's Joe Hanson, Dr. Michio Kaku, NASA's Aprille Ericsson-Jackson, Veritasium's Derek Muller, to name a few (and there are so many more people we adore too!). Who do you think is a good science role model? via Alex Ruiz on G+

Did I just get mentioned in the same e-breath as Michio Kaku and Brian Greene? I could just hug you guys, ASAPscience. But also… wut?!?!

jtotheizzoe:

asapscience:

Yes! For example: It’s Okay To Be Smart's Joe Hanson, Dr. Michio Kaku, NASA's Aprille Ericsson-Jackson, Veritasium's Derek Muller, to name a few (and there are so many more people we adore too!). Who do you think is a good science role model? 

via Alex Ruiz on G+

Did I just get mentioned in the same e-breath as Michio Kaku and Brian Greene? I could just hug you guys, ASAPscience. But also… wut?!?!

neuromorphogenesis:

Mind-controlled robotic suit to debut at World Cup 2014

Shortly before 5pm local time on 12 June at Arena Corinthians in São Paulo, a young paraplegic Brazilian will stand up from a wheelchair, walk over to midfield, and take a kick in the opening ceremony of the 2014 World Cup.

For those hoping for miracles at football’s greatest tournament, the scene may be the closest they get to witnessing one. For Miguel Nicolelis, a neuroengineer based at Duke University in North Carolina, the moment demands faith of another kind. As hundreds of millions tune in for the opening match, they will see the first public demonstration of technology he claims will turn wheelchairs into museum pieces.

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. The robotics work was coordinated by Gordon Cheng at the Technical University in Munich, and French researchers built the exoskeleton. Nicolelis’s team focused on ways to read people’s brain waves, and use those signals to control robotic limbs.

On Tuesday, the team launches a Facebook page that will document the project in the days leading up to the World Cup. A dedicated website is due to go live later this week.

Nicolelis is training nine paraplegic men and women, aged 20 to 40, to use the exoskeleton at a neurorobotics rehabilitation lab in São Paulo. Three will be chosen to attend the opening ceremony, before the opening game between Brazil and Croatia, with one heading on to the pitch to perform the demonstration.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery – also carried in the backpack – that allows for two hours of continuous use.

"The movements are very smooth," Nicolelis told the Guardian. "They are human movements, not robotic movements."

Nicolelis says that in trials so far, his patients seem have taken to the exoskeleton. “This thing was made for me,” one patient told him after being strapped into the suit.

The operator’s feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer’s shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

One patient, whose spinal injury meant he could not feel or move his legs, told Nicolelis: “I feel like I’m walking on the beach, that I’m touching the sand.”

Nicolelis likens the effect to the rubber hand illusion, where the mind is tricked into thinking that an inanimate object is part of the person. “It confirms our prediction that we are going to elicit a sensation that the exoskeleton is an extension of their body,” Nicolelis said.

In other trials, patients have used the mind-control system to walk on a treadmill.

Nicolelis said he believed the technology was ripe for turning into everyday devices to help paraplegics and could ultimately replace wheelchairs.

"All of the innovations we’re putting together for this exoskeleton have in mind the goal of transforming it into something that can be used by patients who suffer from a variety of diseases and injuries that cause paralysis," he said.

The system has been through numerous safety tests. The exoskeleton is fitted with multiple gyros to stop it falling over during the balancing act of bipedal walking. As an extra safety measure, it was fitted with multiple airbags.

Last month, Nicolelis and his colleagues went to football matches in São Paulo to check whether mobile phone radiation from the crowds might interfere with the suit. Electromagnetic waves could make the exoskeleton misbehave, but the tests were encouraging. The chances of the exoskeleton malfunctioning, and stomping off into the distance, are apparently slim.

Sethu Vijayakkumar, a roboticist at Edinburgh University, said exoskeletons were a natural progression for rehabilitation and made the most of robotic and human abilities.

"This is something that will happen, and needs to happen. Humans are very good at high-level decisions and making sense of ambiguous situations, but robots are very good at very precise, repetitive, accurate movements,” he said. “Exoskeletons are the way to marry these two together.”